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PhoenixPhoenix

• Cray X1E

• 1024 Multi-Streaming Processors (MSPs)
− 18 GF per MSP (and even faster in single 

precision)
− 18 TF peak

• 2 TB globally addressable memory
− 8 GB per uniform-shared-memory node
− 2 GB per MSP

• Powerful interconnect
− Enhanced 3D torus
− Over 10 GB/s measured MPI bandwidth 

between MSPs
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MSP versus SSP

• Each MSP has four Single-
Streaming Processors (SSPs)

• Which is “the” processor?

• MSP?
− 8-pipe vector processor
− One MPI task
− Automatic multi-streaming 

by compiler
− 2 MB shared cache
− Most-common mode for real 

applications

• SSP?
− 2-pipe vector processor
− Can be an independent MPI 

process (or OpenMP thread)

2 MB cache

SSP SSP SSP SSP
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MCMs, nodes, and modules! Oh my!

• Node = 4 MSPs with uniform shared memory

• MCM = Multi-Chip Module = 2 MSPs in different nodes

• Module = 1 physical board = 
2 nodes
− Nodes are interleaved in 

hardware
− Separate memory (still 

globally addressable)
− Shared memory bandwidth
− Shared interconnect 

bandwidth
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Interconnect

• Enhanced 3D torus
− Fully connected in one dimension

• High bandwidth
− 10.8 GB/s measured MPI point-to-point
− Takes four MSPs to saturate module bandwidth

• Globally addressable memory
− Load/store memory on any node

• Remote address translation
− On memory’s node, not at processor
− Avoids TLB misses
− Requires contiguous processors (default)
− This is why jobs migrate

• Cache coherent
− Only cache local memory
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Many levels of parallelism

• Vectorization within SSP

• Multistreaming within MSP

• OpenMP within node (not recommended)

• Between nodes (or processors)
− MPI-1 two-sided message passing
− MPI-2 one-sided communication
− SHMEM one-sided communication
− Co-Array Fortran remote memory
− Direct load/store using pointers
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X1E strengths

• Fast vector processors
− 18 GF double-precision peak (MSP), 15.3 GF DGEMM
− Double-rate single precision

• High memory bandwidth (local and remote)
− Stream triad of 32.7 GB/s on one MSP
− Stream triad of 15.4 GB/s/MSP fully loaded
− 10.8 GB/s MPI ping pong
− 108 GB/s Parallel Transpose
− Good at stride-1, strided, and random access

• Latency tolerance
− Vectorization hides (global and local) memory latency
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X1E weaknesses

• Limited memory per MSP

• Very slow scalar processor
− 565 MHz
− 2-way superscalar
− Simple design (compared to Opteron)

• Tuning is required
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Using Phoenix

• http://nccs.gov
Resources 

Cray X1E Phoenix

http://nccs.gov
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Login to Robin1

• 4-processor Opteron system with 32 GB of memory
− “Robin” will point to Robin1 in a week or so

• Cross compile for Phoenix
− Up to 30x faster than on Phoenix

• Phoenix “/tmp/work” mounted over NFS
• Most Phoenix “man” pages

• Submit and monitor jobs
− All PBS and Moab commands
− Even “qsub -I”; shell runs remotely on Phoenix
− Moab command are slow; Phoenix is the server

• Typical Linux editors and tools
− Emacs, Subversion, etc.
− See “module avail”

• Software auto-configuration can be tricky
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Compiling

• Avoid “#ifdef CRAY”
− Cray X1E too different from past Cray’s (more like other vendors’)
− Default type sizes are not all 64 bits

• Use default optimization
− Don’t try to fix performance problems with higher optimization

• Always generate loopmarks (“-rm”, “-h list=a”)
• Often generate instrumented executables (“pat_build”)
• Try newer (or older) compilers with “module swap”

− module avail PrgEnv
− module swap PrgEnv PrgEnv.5509

• “-O/h gen_private_callee” to generate procedure interfaces for 
calling within CSD streams

• “-Z” for Co-Array Fortran (“-h upc” for UPC)
• “-O/h command” for serial tools on Phoenix OS nodes

− Make sure “configure” uses this (when using Phoenix directly)
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Batch jobs

• Scheduling policy not changing (unlike Jaguar)

• Always specify requirements in MSPs
− “-l mppe=N”
− For SSP jobs, divide SSP count by four
− Jobs using more than one node (4 MSPs) must request an integer 

multiple of 8 MSPs
• To line up on module boundaries for remote address 

translation

• For more memory
− Tell batch system using MSP request (not memory request)
− Memory/(1.7 GB) = number of MSPs to request
− Tell “aprun” memory requirement using “-m”
− May need to set environment variables
− See “man 7 memory” on Phoenix
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Debugging

• Avoid “-g”
− Horrible performance
− Bugs often go into hiding
− All levels of “-G” affect optimization

• Always set “TRACEBK” environment variable
− setenv TRACEBK 30
− export TRACEBK=30

• Turn on core files: “aprun -c core=unlimited”
− Only in “/tmp/work”!

• View core files with “totalview” or “totalviewcli”

• Check traceback for hints on where to look
− This says to look at core file #299:
Traceback for process 64311(ssp mode) apid 64184.229 on node 7

• See online docs to try interactive debugging
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Tuning is required

• Tuning priorities

• Vectorization

• Multistreaming

• Communication

• OpenMP?

• Tuning strategy



19

Tuning priorities

• Vectorization (10x)

• Multistreaming (4x)

• Low-latency communication (2x)

• Register blocking (<2x)

• Cache blocking?
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Vectorization

• One vector instruction = many loop iterations

• Needs enough loop iterations
− 64 (multistreamed) or 256 on X1E
− Fewer iterations = lower efficiency

• No procedure calls

• No loop-carried data dependencies
− Some exceptions (reductions)
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Vectorization: What the compiler can do

• Array notation

• Scalar temporary variables

• Re-arrange loop nests

• Reductions, (un)pack, scatter/gather

• Fuse loops and array statements

• Inline procedures (one level down)

• “if” statements within loops
− Vector masks, some loss of efficiency
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Vectorization: What compilers can’t do

• Make short vector loops efficient

• Make stride-1 (or -0) scatter/gather efficient

• Know that index arrays don’t repeat
− do j = 1, n

x(i(j)) = x(i(j)) + …

• Effectively inline many levels down
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Vectorization: How you can help

• Assert that a loop is concurrent (index arrays don’t repeat)
− !dir$ concurrent

− #pragma _CRI concurrent

• Assert that an index array is a permutation
− !dir$ permutation(i)

• Change array temporaries to scalar
− Can remove dependencies

• Break up the big outer loop
− To move it inside multiple inner loops

• Move loops inside procedure calls

• Move I/O outside of compute loops
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Vectorization: Loopmark listings

• What vectorized, what didn’t, and why?

679.                     ndayc = 0

680.  Vs------------<    do i=1,ncol

681.  Vs                    if (coszrs(i) > 0.0_r8) then

682.  Vs                       ndayc = ndayc + 1

683.  Vs                       idayc(ndayc) = i

684.  Vs                    end if

685.  Vs------------>    end do

ftn-6205 f90: VECTOR File = radcswmx.F90, Line = 680 

A loop starting at line 680 was vectorized with a single vector iteration.
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Beware of partial vectorization

6.  Vp----< DO i = 1,n

7.  VP r-<> e(ix1(i)) = e(ix1(i)) - a(i)

8.  VP----> END DO

f90-6371 f90: VECTOR File = gs-2.f, Line = 6

A vectorized loop contains potential conflicts due to indirect

addressing at line 7, causing less efficient code to be 

generated.

f90-6204 f90: VECTOR File = gs-2.f, Line = 6

A loop starting at line 6 was vectorized.
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Fix with directives
6.       !dir$ concurrent

7.  MV--<       DO i = 1, n

8.  MV            e(ix1(i)) = e(ix1(i)) - a(i)

9.  MV-->       END DO

f90-6203 f90: VECTOR File = gs-2.f, Line = 7

A loop starting at line 7 was vectorized because an IVDEP

or CONCURRENT compiler directive was specified.

f90-6203 f90: STREAM File = gs-2.f, Line = 7

A loop starting at line 7 was streamed because an IVDEP

or CONCURRENT compiler directive was specified.

Declaring ix1 as a permutation may be even better
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Multistreaming

Compiler can multistream:

• Most vectorizable loops

• Most array syntax

• Nested loops with no 
dependencies

• Loop nests for 
vectorization within 
multistreaming

• Short loops

Compiler can’t:

• Multistream loops with:
− Procedure calls
− Dependencies

• Always choose the right 
loop to vectorize versus 
multistream
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Multistreaming: How you can help

• Directives, directives, directives
− !dir$ concurrent
− !dir$ preferstream
− !dir$ prefervector
− !dir$ ssp_private

(procedure calls)

• Cray Streaming Directives (CSDs)
− Much like OpenMP
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I/O inside a loop

6.  1--< do i = 1, nx

7.  1      c(i) = a(i) * b(i)

8.  1      write(8,'(1x,f12.4)') c(i)

9.  1--> end do

ftn-6286 ftn: VECTOR File = io1.ftn, Line = 6 

A loop starting at line 6 was not vectorized because it contains

input/output operations at line 8.

ftn-6709 ftn: STREAM File = io1.ftn, Line = 6 

A loop starting at line 6 was not multi-streamed because it contains

input/output operations.
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Fixed

7.  MVr--< do i = 1, nx

8.  MVr c(i) = a(i) * b(i)

9.  MVr--> end do

10.         

11.         write(8,'(1x,f12.4)') (c(i),i=1,nx)

ftn-6005 ftn: SCALAR File = io2.ftn, Line = 7 

A loop starting at line 7 was unrolled 2 times.

ftn-6204 ftn: VECTOR File = io2.ftn, Line = 7 

A loop starting at line 7 was vectorized.

ftn-6601 ftn: STREAM File = io2.ftn, Line = 7 

A loop starting at line 7 was multi-streamed.
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Communication

• Use one-sided communication for latency-sensitive 
operations

• MPI-2 library
− Complicated interface
− No guaranteed progress without synchronization

• SHMEM library
− Vendor specific

• Co-Array Fortran
− Lowest latency
− Currently vendor specific
− Part of next Fortran language standard

• Intermix with each other and MPI-1
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OpenMP?

• If OpenMP used for different parallelism than MPI
− Probably the same parallelism as for vectorization and 

multistreaming
− Typically not enough parallel work for all three
− OpenMP is least efficient of the three

• If OpenMP used for same parallelism as MPI
− Useful for reducing message volume and aggregating 

messages
− But one MSP can’t saturate the network
− Little reason to aggregate

• Don’t bother with OpenMP on Phoenix
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Tuning strategy

• Functional port

• Iterate
− Loopmark and profile
− Vectorize and multistream

• Tune communication
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Profiling

• Instrument executable with “pat_build”

• Run and generate performance report
− Together: “pat_run”
− Separately: “aprun” followed by offline “pat_report”

on resulting “.xf” file

• Use report to locate bottlenecks, then use loopmark
listings to diagnose problems and solutions
− Use call-tree reports to find which calls were expensive
− Apprentice2 tool provides graphical browsing

• For aggregate hardware-counter statistics, use 
“pat_hwpc”
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More information

• This information and more at:
http://nccs.gov Resources Cray X1E Phoenix
http://info.nccs.gov Cray X1E Phoenix
http://info.nccs.gov/resources/phoenix

• Cray documentation at http://docs.cray.com
− Cray X1 Series System Overview
− Cray Fortran, C/C++ reference manuals
− Migrating Applications to the Cray X1 Series Systems
− Optimizing Applications on Cray Series Systems
− Excellent search capability

• E-mail us:  help@nccs.gov

http://nccs.gov
http://infonccs.gov
http://info.nccs.gov/resources/phoenix
http://docs.cray.com/
mailto:help@nccs.gov
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